XML Conceptual Review




Modules Roadmap:
You Are Here

A XML Conceptual Review




Objectives Roadmap

This module supports the following course objectives:

Define the physical components of an
XML exchange.

Identify basic XML components that are
used in the NIEM structure.

lﬂﬂllr



Module Objectives

* In this module, we will review how to:

¢ Compare and contrast XML elements and
attributes.

¢ Describe the characteristics of a well-formed
iInstance.

¢ Create an XML instance based on the given XML
schema.




What do XML tags (elements) do?

* The information in an XML document is
contained within the various tags that
constitute the markup of the document.

* Makes it easy to distinguish the information from
the markup.

¢+ Make it possible for incompatible computers,
operating systems, & applications to share
information.

¢ Allow XML to become a universal translator
between systems.




Naming Rules For XML Elements

* Can contain letters, numbers, and other
characters.

* Must not start with number or punctuation.
* Must not start with xml, XIVIL, or Xml.
* Cannot contain spaces.




Valid/Invalid Element Names

Valid

<Person_Name>
<Personl23>

<Person-Name>
<Person.Name>

Invalid

<Person_Name&:>
<123Person_Name>
<Person Name>

< Person_Name>
<Person;Name>




Other Element Naming Considerations

* Make names descriptive.

* Avoid [-] and [.] and [:] in names (dash,
period, and colon).
¢ Usually reserved for namespaces.
+ Allowed, but not a general best practice.

* Can be as long as you like.
¢ Should be descriptive and be consistently used.

* Non-English letters like “é 0 a” are legal.
¢+ Watch out for problems... may not be supported.




Root, Parent, and Child Elements

¢ First elementin an XML
document is called a root

element _——r<Person>

e Person is the name of the
element <Per50nName>

e Also the Parent element <PersonGivenName>
of “PersonName”

Marge
</PersonGivenName>
<PersonSurName>

 Parent element of Simpson
“PersonGivenName” and
el — </PersonSurName>
e Child element of “Person” </PersonName>
</Person>




XML Comments

* Examples

<Person>
<l--This is a valid comment -->
<PersonName>
<PersonSurName>Simpson</PersonSurName>
<PersonGivenName>Homer</PersonGivenName>
</PersonName>
<l--This is also
a valid comment -->
<Employment>
<EmployerName>Springfield Nuclear</EmployerName>
</Employment>
</Person>




Processing Instructions

Generally speaking, used to encode
application-specific data.

¢+ Most popular usage to associate presentation or
transformation files with the data.

Starts with “<?”
Ends with “?>”

Examples:

<?xml-stylesheet href="mystyle.css" type="text/css"?>

<?perl lower-to-upper-case?>




Prolog

* A special processing instruction included at
the beginning of an XML instance.

¢ Specifies version & character encoding

* Example:

<?xml version="1.0" encoding="UTF-8"?>
<Person>
<PersonName>
<PersonSurName>Flanders</PersonSurName>
<PersonGivenName>Ned</PersonGivenName>
</PersonName>
</Person>




XML Attributes

* Part of an element that provides additional
information about that element.

+ Defined as a name/value pair (Single Property for

an Element).
<?xml version="1.0" encoding="UTF-8"?>
<Person>
<PersonName nameCode="RealName">
<PersonSurName>Flanders</PersonSurName>
<PersonGivenName>Ned</PersonGivenName>
</PersonName>
</Person>




Quotation Marks in Attributes

* Values must always be enclosed in quotes.
¢ Either ‘single’ or “double” quotes can be used.
¢ Double quotes most common

¢+ |f value contains single quotes, it is necessary to
use double quotes.




Attributes Quoting Examples

<Person>
<PersonName>
<PersonSurName>Simpson</PersonSurName>
<PersonGivenName>Homer</PersonGivenName>
</PersonName>
<Sourcelist name="Moe's Tavern Bowling Team"/>
</Person>

15




Attribute Usage

* No concrete rule to differentiate attribute
usage from element usage.

* Ultimately, it is a subjective decision

¢ If it seems like data, it is an element.

¢+ |f it seems like a description of data, it is an
attribute.

* The deciding factor might be that you do not
put “content” in an attribute.

16



Element vs. Attribute

An element can be any data type
An attribute is just a string.

An element can have other elements or
attributes nested inside of it.

An attribute cannot have an element or
attribute nested inside of it.

1%



Exercise 2.1: Attribute or Element?

* Are the following items Attributes or
Elements, and why?
¢ Name
¢ Measurement Units
¢+ Age
¢ Reliability
¢ Accuracy




Solution 2.1: Attribute or Element?

* Name (Element)

¢ How name is represented can vary significantly. It can be a simple name
or a structured name.

* Measurement Units (Attribute)
¢ Generally it is a quantifier. E.g., speed would use an attribute such as this
to designate MPH (Miles per Hour, Foot-Pounds, Newton Meters, etc.)
* Age (Element)

¢+ Besides potentially needing to be extended to represent a range instead
of a discrete age, qualifying the age would be easily done with something
like a measurements attribute from above. E.g., Years, Days, Months.

* Reliability (Attribute)
+ It will typically qualify something else, like a statement of fact.

e Accuracy (Attribute)

+ It will typically qualify something else, like a measurement of something.
E.g., 20 MPH +/- 5.

18




Well-formed XML ;..

* An XML instance (document containing XML
tags and content) with correct syntax as

defined by the XML standard is referred to as
being “well-formed.”

* “Well-formed” refers only to the structure
and syntax of the XML.

20



Well-formed XML ...

 A"well-formed" XML document instance has
correct XML syntax.

° |tis a document that conforms to the XML
syntax rules.

A well-formed document is one that meets
the minimum criteria for XML parsers to read
the document.

21




Rules for Well-formed XML ..

* XML declaration (Prolog) must come first in
every document.

* Comments are not valid within a tag.

* Comments may not contain two hyphens in a
row other than the beginning and end of the
comment.

* Tags must have an end tag, or be closed
within the singleton tag itself, for example
<PersonAge/>

22



Rules for Well-formed XML ..

* All attributes of tags must be quoted.

* Preferably double quotes, unless attribute
contains a double quote (then use single quotes).

* Every XML document must contain one root
element that completely contains all the other
elements.

* Tags cannot overlap — must nest correctly.

23



Exercise 2.2: Find the Errors

<Root>
< PersonName>
<PersonSurName>Simpson</PersonSurName>
<PersonGivenName>Homer</PersonGivenName>
</PersonName>
<Employment/>
<EmployerName>Springfield Nuclear</EmployerName>
</Employments>
</Root>
<Residence>
<LocationAddres>
<StreetAddress>100 Industrial Way</StreetAddress>
<LocationCityName>Springfield</LocationCityName>
</LocationAddress>
</Residence>

24




Solution 2.2: Find the Errors

<Root>
< PersonName> J Invalid whitespace in tag
<PersonSurName>Simpson</PersonSurName>
<PersonGivenName>Homer</PersonGivenName>
</PersonName> “/>” in a non-empty element*
<Employment/> '
<EmployerName>Springfield NucIear</EmponerName>

</Employments> Mismatched ending tag
< >
/R0.0t More than 1 root. Should be inside Root
<Residence> !
<LocationAddres> Mismatched starting tag

<StreetAddress>100 Industrial Way</StreetAddress>

<LocationCityName>Springfield</LocationCityName>

</LocationAddress>
</Residence>

Mismatched ending tag

25




What is an XML Instance?

* When you use the rules of an XML schema to

create content, the result is an XML document
Instance.

* The schema controls what the instance looks
like and what is in it.

¢ j.e,, it is the blueprint for what an XML instance
can look like.




PersonName Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetnamespace="http://myNamespace.com"
xmins:xs="http:/lwww.w3.0rg/2001/XMLSchema">
<xs:complexType name="PersonNameType" >
<xs:sequence>
<xs:element name="PersonNamePrefix" type="xs:string" minOccurs="0"/>
<xs:element name="PersonGivenName" type="xs:string" minOccurs="0"/>
<xs:element name="PersonMiddleName" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="PersonSurName" type="xs:string"/>
<xs:element name="PersonSuffixName" type="xs:string" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="PersonNameCode" use="optional" default="RealName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="RealName"/>
<xs:enumeration value="Alias"/>
<xs:enumeration value="BirthName"/>
<Ixs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:element name="PersonName" type="PersonNameType"/>

27
</xs:schema>




Resulting Example Instance

<?xml version="1.0" encoding="UTF-8"?>
<PersonName PersonNameCode="RealName">
<PersonNamePrefix>Mr</PersonNamePrefix>
<PersonGivenName>Juan</PersonGivenName>
<PersonMiddleName>Anna</PersonMiddleName>
<PersonSurName>Tu</PersonSurName>
<PersonSuffixName>Sr</PersonSuffixName>
</PersonName>




Exercise 2.3: Instance

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmins:local-ns="http://myNamespace.com"
xmins:xs="http:/lwww.w3.0rg/2001/XMLSchema">
<xs:element name="Location">
<xs:complexType>
<xs:sequence>
<xs:element name="LocationName" type="xs:string" minOccurs="0"/>
<xs:element name="LocationAddress">
<xs:complexType>
<xs:sequence>
<xs:element name="AddressFullText" type="xs:string" minOccurs="0"/>
<xs:element name="LocationCityName" type="xs:string" minOccurs="0"/>
<xs:element name="LocationStateName" type="xs:string"/>
<xs:element name="PostalCodeText" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema> 22




Solution 2.3: Instance

<?xml version="1.0" encoding="UTF-8"?>
<Location
xmlns:my="http://myNamespace.com"
xmlns:xsi=
xsi:schemalocation="Path to schema" >

<LocationName>Charville Farmhouse</LocationName>

<LocationAddress>
<AddressFullText>421 Bath Rd</AddressFullText>
<LocationCityName>Charville</LocationCityName>
<LocationStateName>Utah</LocationStateName>
<PostalCodeText>83405</PostalCodeText>

</LocationAddress>

</Location>

30


http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

Module Summary

* In this module, we reviewed how to:

¢ Compare and contrast XML elements and
attributes.

¢ Describe the characteristics of a well-formed
iInstance.

¢ Create an XML instance based on the given XML
schema.




©creative o |
commons @ Attribution—You must give

T the original author credit

Attribution-ShareAlike 2.0

ShareAlike—If you alter,
You are free to

transform, or build upon this

e Copy, distribute, display, and perform the work work, you may distribute the
e Make derivative works resulting work only under a
e Make commercial use of the work license identical to this one

Under the following conditions
e For any reuse or distribution, you must make clear to others the license terms of this work
e Any of these conditions can be waived, if you get permission from the copyright holder

Your fair use and other rights are in no way affected by the above
This is @ human-readable summary of the and

This page is available in the following languages

4 4 4 4 4 4 4 4 4 4

and



http://creativecommons.org/
http://creativecommons.org/licenses/by-sa/2.0/legalcode
http://creativecommons.org/licenses/disclaimer-popup?lang=en
http://creativecommons.org/licenses/by-sa/2.0/deed.ca
http://creativecommons.org/licenses/by-sa/2.0/deed.de
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://creativecommons.org/licenses/by-sa/2.0/deed.es
http://creativecommons.org/licenses/by-sa/2.0/deed.fi
http://creativecommons.org/licenses/by-sa/2.0/deed.fr
http://creativecommons.org/licenses/by-sa/2.0/deed.hr
http://creativecommons.org/licenses/by-sa/2.0/deed.it
http://creativecommons.org/licenses/by-sa/2.0/deed.ja
http://creativecommons.org/licenses/by-sa/2.0/deed.nl
http://creativecommons.org/licenses/by-sa/2.0/deed.pt
http://creativecommons.org/licenses/by-sa/2.0/deed.zh_TW
http://creativecommons.org/licenses/by-sa/2.0/deed.zh_TW
http://creativecommons.org/licenses/by-sa/2.0/deed.zh_TW
http://creativecommons.org/licenses/by-sa/2.0/deed.zh_TW
http://creativecommons.org/learn/licenses

